首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11842篇
  免费   2618篇
  国内免费   3212篇
测绘学   1610篇
大气科学   2787篇
地球物理   2593篇
地质学   5186篇
海洋学   1836篇
天文学   389篇
综合类   998篇
自然地理   2273篇
  2024年   35篇
  2023年   176篇
  2022年   407篇
  2021年   507篇
  2020年   541篇
  2019年   567篇
  2018年   528篇
  2017年   610篇
  2016年   565篇
  2015年   672篇
  2014年   846篇
  2013年   928篇
  2012年   797篇
  2011年   828篇
  2010年   710篇
  2009年   932篇
  2008年   843篇
  2007年   865篇
  2006年   840篇
  2005年   694篇
  2004年   647篇
  2003年   537篇
  2002年   518篇
  2001年   452篇
  2000年   376篇
  1999年   350篇
  1998年   315篇
  1997年   258篇
  1996年   260篇
  1995年   203篇
  1994年   169篇
  1993年   165篇
  1992年   137篇
  1991年   84篇
  1990年   83篇
  1989年   54篇
  1988年   47篇
  1987年   30篇
  1986年   25篇
  1985年   20篇
  1984年   11篇
  1983年   7篇
  1982年   6篇
  1981年   2篇
  1980年   4篇
  1979年   8篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
11.
云南中甸-大具断裂上新发现的地震地表破裂带   总被引:1,自引:0,他引:1  
中甸-大具断裂是川滇菱形块体的西南边界,总体走向310°—320°。近年来我们对该断裂进行了1:50000条带状地质填图,发现了断裂活动的地质地貌证据。其中,在丽江大具盆地内(金沙江右岸)沿断裂新发现一处典型地震地表破裂带,长约600m,宽120m左右,主要表现为地表挤压鼓包、挤压垄脊、张裂缝、挤压阶区等,呈NW走向,与中甸-大具断裂走向基本一致。野外工作中,我们详细记录和测量了地表破裂的破裂样式、破裂规模和相关定量数据,利用旋翼无人机测绘了地表破裂带的形态和展布,获得了高精度DEM,分析了地表破裂表现出的运动性质。在已有资料的基础上讨论了地表破裂的形成时代、归属、震级大小,简要分析了其发震断层。新地震地表破裂带的发现为进一步研究中甸-大具断裂活动特征、古地震及地震危险性提供了基础资料。  相似文献   
12.
Ning  Like  Zhan  Chesheng  Luo  Yong  Wang  Yueling  Liu  Liangmeizi 《地理学报(英文版)》2019,29(3):465-479
Journal of Geographical Sciences - The terrestrial hydrological process is an essential but weak link in global/regional climate models. In this paper, the development status, research hotspots and...  相似文献   
13.
基于ECMWF全球大气模型和中国地面气候资料日值数据集中新疆及周边的气象站气压数据,根据弹性地壳形变理论,采用移去-恢复法,利用负荷格林函数法和球谐函数法,计算新疆及周边区域2011~2015年大气负荷变化对地壳垂直、水平形变的影响,同时采用大气导纳方法计算大气变化对地面重力的影响。结果表明,大气负荷对新疆地区垂直形变的影响达到cm级,对地面重力的影响可达10 μGal;大气负荷影响具有明显的季节性。  相似文献   
14.
为了探索深海,不同类型的深海运载装备得以成功开发,并应用于深海科学、资源勘探开发、工程保障及战略安全等不同领域。深海运载装备可以分为载人潜水器(HOV)、遥控深潜器(ROV)、自治式深潜器(AUV)及混合型深潜器,其中以载人潜水器为代表的高技术装备群成为建设海洋强国的重要保障力量。文章对美国"阿尔文"号、俄罗斯"和平I"号和"和平II"号、日本"深海6500"号、法国"鹦鹉螺"号、中国"蛟龙"号载人潜水器运行管理机制进行了阐述,综合比较其优缺点,提出了建立职业化运行保障队伍、优化作业流程,创新组织结构、探索多型潜水器海上作业模式等运行管理机制构架的建议。  相似文献   
15.
基于1951—2018年哈德里中心海温资料、美国气象环境预报中心和美国国家大气研究中心再分析资料和第四代欧洲中心汉堡模式, 针对1994年、2018年等西北太平洋热带气旋(TC)生成异常多的年份, 研究了引起TC增加的海表温度异常(SSTA)模态及其影响机制。结果表明, 北半球热带中太平洋增暖与印度洋变冷是夏季西北太平洋TC生成频数增加的主要原因, 北大西洋负三极型式SSTA促使TC生成的进一步增加。热带中太平洋增暖与印度洋冷却在菲律宾以东激发出西风异常和气旋性环流异常。北大西洋负三极型式SSTA在我国南海、菲律宾至东南沿岸激发出气旋性环流异常。前者在西北太平洋中部, 后者在南海产生有利于TC生成的局地环境。1994年和2018年夏季热带中太平洋出现暖SSTA、印度洋为冷SSTA、北大西洋呈现负三极型式SSTA, 西北太平洋TC生成频数极端增多。近30年来, 当出现热带中太平洋增暖和印度洋冷却时, 北大西洋表现出比1989年以前更强的负三极型式SSTA, 使西北太平洋TC生成频数和北半球热带印度洋-太平洋SSTA梯度的线性相关更显著。  相似文献   
16.
Riparian land use is a key driver of stream ecosystem processes but its effects on water quality are still a matter of debate when proposing measures to improve freshwater quality. The aim of this study was to examine the influence of riparian land use on stream habitat and water chemistry, and to assess in what extent stream habitat also affects water quality. To that end, we selected eight reaches in the Ave River basin (northwestern Portugal) and compared longitudinal variations in water chemistry and stream habitat between reaches with different land use (urban, agricultural and natural), and between reaches with natural riparian areas and different habitats. Stream habitat was assessed using the Fluvial Functional Index, the HABSCORE, and the Riparian Forest Quality Index. Longitudinal variations in water chemistry were determined measuring differences in concentrations of ammonium, nitrate, phosphate and oxygen, and conductivity, pH and temperature between the downstream and the upstream ends of each reach. Nitrate concentration tended to decrease along reaches with more natural riparian areas and to increase along reaches with more urban and agricultural land uses. Longitudinal variations in water chemistry also differed between reaches with natural riparian areas, suggesting that water quality also depends on stream habitat. Moreover, longitudinal variation in water chemistry was proven a simple, useful and low-cost approach to assess the influence of land cover and stream habitat on water quality. Overall results demonstrated that both riparian land use and stream habitat influence water quality and that riparian forests are essential to reduce nutrient export to downstream ecosystems.  相似文献   
17.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
18.
The emergence of high-resolution land cover data has created the opportunity to assess the accuracy of impervious cover (IC) provided by the National Land Cover Database (NLCD). We assessed the accuracy of the 900 m2 NLCD2011 %IC for 18 metropolitan areas throughout the conterminous United States using reference data from 1 m2 land cover data developed as part of the United States Environmental Protection Agency’s EnviroAtlas project. Agreement was assessed from two perspectives: 1) sensitivity to the size of the assessment unit used for the comparison, and 2) utility of NLCD %IC to serve as a proxy for high-resolution IC. The former perspective was considered because statistical relationships can be sensitive to assessment unit size and shape, and the latter perspective was considered because high resolution (reference) %IC data are not available nationwide. The utility of NLCD %IC as a proxy for the high resolution data was assessed for seven lattice (square) cell sizes ranging from 1 ha to 200 ha using four EnviroAtlas IC indicators: 1) %IC per 100 ha (1 km2); 2) %IC by Census block group; 3) %IC within a 15 m (radius) of the riparian zone, and; 4) %IC within a 50 m (radius) of the riparian zone. Agreement was quantified as per assessment unit deviation (NLCD %IC – reference %IC) and summarized as Mean Absolute Deviation (MAD) and Mean Deviation (MD) both within and across the 18 metropolitan areas. Ordinary least squares (OLS) regression (y = reference %IC and x = NLCD %IC) was also used to evaluate the quality of the NLCD %IC data. MAD was ≤ 5% for six of the seven lattice cell sizes. MAD was also ≤ 5% for Census block groups > 100 ha and for both riparian units. These results suggest that uncertainty attributable to the measurement of %IC was no greater than the uncertainty related to the effect of IC on aquatic resources that have been derived from studies of aquatic condition (e.g., benthic fauna) over a range of %IC. Overall, agreement was variable from one metropolitan area to the next. Agreement improved as assessment unit size increased and declined as the level of urbanization (NLCD %IC) increased. NLCD %IC tended to underestimate reference %IC overall, but NLCD %IC was sometimes greater than reference %IC in urbanized settings.  相似文献   
19.
Soil surface roughness (SSR) is an important factor in controlling sediment and runoff generation, influencing directly a wide spectrum of erosion parameters. SSR is highly variable in time and space under natural conditions, and characterizing SSR to improve the parameterization of hydrological and erosion models has proved challenging. Our study uses recent technological and algorithmic developments in capturing and processing close aerial sensing data to evaluate how high-resolution imagery can assist the temporally and spatially explicit monitoring of SSR. We evaluated the evolution of SSR under natural rainfall and growing vegetation conditions on two arable fields in Denmark. Unmanned aerial vehicle (UAV) photogrammetry was used to monitor small field plots over 7 months after seeding of winter wheat following conventional and reduced tillage treatments. Field campaigns were conducted at least once a month from October until April, resulting in nine time steps of data acquisition. Structure from motion photogrammetry was used to derive high-resolution point clouds with an average ground sampling distance of 2.7 mm and a mean ground control point accuracy of 1.8 mm. A comprehensive workflow was developed to process the point clouds, including the detection of vegetation and the removal of vegetation-induced point cloud noise. Rasterized and filtered point clouds were then used to determine SSR geostatistically as the standard deviation of height, applying different kernel sizes and using semivariograms. The results showed an influence of kernel size on roughness, with a value range of 0.2–1 cm of average height deviation during the monitoring period. Semivariograms showed a measurable decrease in sill variance and an increase in range over time. This research demonstrated multiple challenges to measuring SSR with UAV under natural conditions with increasing vegetation cover. The proposed workflow represents a step forward in tackling those challenges and provides a knowledge base for future research. © 2020 John Wiley & Sons, Ltd.  相似文献   
20.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号